gands and since it is slowly converted into 3a by PMe₃, we formulate it as $W_2Cl_6(THF)_4$ (3c).¹⁰ Further reduction of 3c in THF yields an intense blue solution which contains an as yet unidentified thermally unstable species.

From these data alone we are not able to choose between several possible pathways to 1. Both 3a and 3c are plausbile intermediates. At present we believe the intermediate would more likely be 3a since 3c (as noted above) does not appear to react rapidly enough with PMe₃ to give 1.

If WCl₄ is allowed to react with PMe₃ to yield $WCl_4(PMe_3)_3$ before any sodium amalgam is added, then subsequent reduction yields only monomeric species. WCl₄(PMe₃)₃ is reduced first to orange, crystalline mer-WCl₃(PMe₃)₃¹¹ and then to orange, crystalline trans-WCl₂(PMe₃)₄¹² with 1 and 2 equiv of sodium amalgam (respectively) in THF at 25 °C in the presence of 1 equiv of PMe₃. Interestingly, however, dimeric W₂Cl₄(PMe₃)₄ can be prepared from WCl₂(PMe₃)₄ in 60% yield in refluxing dibutyl ether (eq 2); loss of volatile PMe3 must yield fragments such as $WCl_2(PMe_3)_3$ which can then dimerize, ultimately to give $W_2Cl_4(PMe_3)_4$. Note that a similar attempt to make **3a** from WCl₃(PMe₃)₃ gave a 2:1 mixture of WCl₄(PMe₃)₃ and W2Cl4(PMe3)4; presumably WCl3(PMe3)3 first disproportionates to $WCl_2(PMe_3)_x$ and $WCl_4(PMe_3)_y$ (eq 3).

WCl₂(PMe₃)₄
$$\xrightarrow{\text{reluxing}}$$
 0.5W₂Cl₄(PMe₃)₄ + 2PMe₃ (2)

WCl₃(PMe₃)₃
$$\xrightarrow{\text{rertuxing}}$$
 0.25W₂Cl₄(PMe₃)₄
+ 0.5WCl₄(PMe₃)₃ + 0.5PMe₃ (3)

It is quite likely that these W₂Cl₄L₄ compounds are isostructural with the analogous Mo species. This is largely true, although there still are some surprises, as shown by X-ray studies of several of these species.13

We had hoped that the $W_2L_4Cl_4$ species would provide a route to $W_2(OAc)_4$ (a facile reaction when the metal is Mo^{14}). Unfortunately, it appears that the tungsten complexes are more resistant to simple reactions under mild conditions than the Mo species. For example, heating W₂Cl₄(PBu₃)₄ with 4-9 equiv of acetic acid in glyme at 160 °C for 4 h gives a moderate yield of a soluble red complex which contains two types of uncoupled phosphorus nuclei (2:1 by ³¹P NMR), Cl, and what appears to be an acetate ligand by¹³C NMR. We are still attempting to characterize this "W acetate".13

Acknowledgments. We thank the National Science Foundation for support (CHE79-05307) and the Dow Chemical Company for a fellowship to P.R.S. We also thank Mr. Luke Schoeniger of Professor E. Solomon's group for obtaining the Raman data.

References and Notes

- (1) Cotton, F. A. Acc. Chem. Res. 1978, 11, 225-232.
- Cotton, F. A. Acc. Chem. Res. 1979, 17, 225-252.
 Bino, A.; Cotton, F. A.; Dori, Z.; Koch, S.; Kuppers, H.; Millar, M.; Sekutowski, J. C. *Inorg. Chem.* 1978, 17, 3245-3253.
 (a) Armstrong, J. E.; Edwards, D. A.; Maguire, J. J.; Walton, R. A. *Inorg. Chem.* 1979, 18, 1172-1174. (b) Chisholm, M. H.; Cotton, F. A.; Extine,
- Chieff, 1979, 76, 1172–1174. (b) Chieffoldin, M. H., Cottoli, F. A., Extille, M. W.; Millar, M.; Stults, B. R. *Ibid.* 1977, *16*, 320–328.
 (a) San Filippo, J., Jr. *Inorg. Chem.* 1972, *11*, 3140. (b) San Filippo, J., Jr.; Sniadock, H. J.; Grayson, R. L. *Ibid.* 1974, *13*, 2121–2130. (c) Glickman, H. P.; Hamer, A. D.; Smith, T. J.; Walton, R. A. *Ibid.* 1976, *15*, 2205–2200. 2209
- Best, S. A.; Smith, T. J.; Walton, R. A. *Inorg. Chem.* **1978**, *17*, 99. Calcd for $W_2Cl_4(PMe_3)_4(W_2C_{12}H_{36}Cl_4P_4)$: C, 17.71; H, 4.47. Found: C, 17.82; H, 4.52. Calcd for $W_2Cl_4(PMePh_2)_4(W_2C_{52}H_{52}Cl_4P_4)$: C. 47.66; H, 4.00.
- H, 4.52. Calcd for W₂Cl₄(PMePh₂)₄(W₂C₅₂H₅₂Cl₄P₄): C. 47.66; H, 4.00. Found: C, 47.44; H, 4.15. Calcd for W₂Cl₄(diphos)₂(W₂C₅₂H₄₈Cl₄P₄): C, 47.81; H, 3.70. Found: C, 48.25; H, 4.01. Calcd for W₂Cl₄(dippe)₂-tolu-ene(W₂C₁₉H₄₀Cl₄P₄): C; 25.30; H; 4.48. Found: C, 25.28; H, 4.68. (a) Reasonable values for ¹J_{PW}, ²J_{PW}, and ³J_{pp} (230, 49, and 27 Hz, re-spectively, for L = PBu₃) can be obtained by a procedure similar to that employed by Yoshida et al.^{7b} However, in the present case, the spectra are not first order and computer fitting will be necessary for a proper analysis. (b) Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J. A.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 2063–2073.

- (8) Rotating KBr pellet with argon laser 5145-nm light (scanning rate 0.5 cm⁻¹
- (9)
- (10) H 3 83
- (11) (a) Calcd for WCl₃(PMe₃)₃(WC₉H₂₇Cl₃P₃): C, 20.85; H, 5.25. Found: C, 20.51; H, 5.19. The compound shows two very broad peaks for the PMe3 protons in the ¹H NMR spectrum at δ – 11 and – 15 in a 1:2 ratio. We therefore assign the mer geometry to it. An analogous *mer*-MoCl₃py₃ complex is known. ^{11b} (b) Brencic, J. V. *Z. Anorg. Allgem. Chem.* **1974,** 403, 218– 224
- (12) Calcd for WCl₂(PMe₃)₄(WC₁₂H₃₆Cl₂P₄): C, 25.78; H, 6.49. Found: C, 26.20; H, 6.48. A trans geometry was tentatively assigned based on a single broad peak observed for the PMe₃ protons at δ 3.8 in the ¹H NMR spectrum.
 See Cotton, F. A.; Felthouse, T. R.; Lay, D. G. J. Am. Chem. Soc., following
- paper in this issue. (14) San Filippo, J., Jr., Sniadock, H. J. Inorg. Chem. 1976, 15, 2209-2215.

Paul R. Sharp, Richard R. Schrock*

Department of Chemistry Massachusetts Institute of Technology Cambridge, Massachusetts 02139 Received October 15, 1979

Structural Characterization of Four Quadruply Bonded Ditungsten Compounds and a New Trinuclear Tungsten Cluster

Sir:

In contrast to the ease with which quadruply bonded dimolybdenum compounds may be obtained in enormous numbers and variety,¹ the attempted preparation of similar tungsten compounds has been a relatively unproductive exercise.²⁻⁶ Thus, the recent success of Sharp and Schrock⁷ in preparing a whole class of mixed halogeno-phosphine complexes of the general type $W_2X_4(PR_3)_4$, which are stable in air at room temperature, constitutes a very significant contribution to the field of metal-metal multiple bonds.8

Structural characterization of representative members of this new group of compounds has been carried out and the results present an interesting mixture of the expected and the unexpected. We report here the structures of five compounds, all supplied to us in crystalline form by Sharp and Schrock: 1, $W_2Cl_4(PMe_3)_4$; **2**, $W_2Cl_4(dmpe)_2 \cdot C_7H_8$; **3**, green $W_2Cl_4(dppe)_2 \cdot 0.5H_2O;$ 4, brown $W_2Cl_4(dppe)_2;$ 5, W_3 - $O_3Cl_5(CH_3CO_2)(PBu^n_3)_3$ solvate. In these formulas dmpe = $Me_2PCH_2CH_2PMe_2$ and dppe = $Ph_2PCH_2CH_2PPh_2$. Full descriptions of all these structures will be published elsewhere.9,10

W₂Cl₄(PMe₃)₄, 1, has the structure shown in Figure 1. Unlike the stoichiometrically and conformationally similar Re₂Cl₄(PEt₃)₄¹¹ this compound does not pack in a disordered manner and the structure was solved simply and straightforwardly. The structure is that anticipated from our knowledge of dimolybdenum and dirhenium compounds. There should be a W-W quadruple bond and the overall eclipsed conformation is consistent with this; the PMe₃ groups are staggered among themselves. A few important bond distances and angles, for this and for compounds 2-4, are given in Table I.

Table 1. Some Key Bond Distances and Angles in $1-4^{a,b}$

	distances, Å			angles, deg	
compd	W-W	W-CI	W-P	W-W-Cl	W-W-P
1	2.262(1)	2.393 (2)	2.506 (2)	111.73 (6)	101.13 (6)
2	2.287(1)	2.426 (2)	2.451 (2)	116.1(1)	96.2(1)
3	2.280(1)	2.409(1)	2.502(1)	111.0(1)	98.1(1)
4	2.314(1)	2.371 (4)	2.530 (4)	112.3 (1)	97.0(1)

^a Figures in parentheses are esd's occurring in the least significant digit. ^b Values given reflect averages of chemically equivalent distances and angles.

Figure 1. The structure of $W_2Cl_4(PMe_3)_4$, 1, with thermal ellipsoids at the 50% probability level. A twofold rotation axis passes through the W-W bond.

Figure 2. The structure of the $W_2Cl_4(dmpe)_2$ unit in $W_2Cl_4(dmpe)_2 \cdot C_7H_8$, 2. Vibrational ellipsoids are scaled so as to enclose 50% of their electron density. A crystallographic center of inversion is located at the midpoint of the W-W bond.

 $W_2Cl_4(dmpe)_2 \cdot C_7H_8$, 2, has a structure which is fundamentally unsurprising but in detail highly novel; it is shown in Figure 2. The remarkable feature, of course, is the presence of the dmpe ligands as chelating rather than bridging groups; the chelate ring has a chair conformation. The molecule resides on a crystallographic center of symmetry which ensures an eclipsed arrangement of the eight ligand atoms with overall C_{2h} symmetry.

Green $W_2Cl_4(dppe)_2$ ·0.5H₂O, **3**, is found as an "impurity" (about mol 10%) in the reported⁷ brown compound **4**. It has a structure analogous to that of **2** and its bond distances and angles (Table 1) are very similar.

In brown $W_2Cl_4(dppe)_2$, 4, we find the dppe ligands in the bridging posture already familiar from $Mo_2X_4(dppm)_2$ with dppm = $Ph_2PCH_2PPh_2$ and X = Cl and -NCS,¹² Mo_2 -Br₄(arphos)₂ with arphos = $Ph_2PCH_2CH_2AsPh_2$,¹³ and $Re_2Cl_4(dppe)_2$,¹⁴ as shown in Figure 3. The Mo_2 species just mentioned are expected to have quadruple bonds and hence

Figure 3. An ORTEP drawing of brown $W_2Cl_4(dppe)_2$, 4, showing only the α -carbon atoms of the phenyl rings in the dppe ligands. Thermal ellipsoids are drawn at the 50% probability level.

small internal torsion angles. The first two have angles of 0° and 13.3° while the arphos compound has a mean angle of 30°; this last angle is not, however, incompatible with the retention of considerable δ bonding.¹³ The rhenium compound, in which only a triple bond is expected, has a mean torsion angle of 45°, i.e., the conformation is staggered. It is to be noted that Mo₂-Br₄(arphos)₂ and Re₂Cl₄(dppe)₂ are "isomorphous" in the usual loose usage of that term; brown W₂Cl₄(dppe)₂ is similarly "isomorphous" with both of them. Since W₂Cl₄(dppe)₂ has the proper number of electrons to contain a $\sigma^2 \pi^4 \delta^2$ quadruple bond, a torsion angle comparable with that in Mo₂-Br₄(arphos)₂ might have been anticipated, but, in fact, 4 has an essentially staggered conformation like that of Re₂Cl₄(dppe)₂.¹⁵

In compounds 1, 2, and 3 the mean W-W distance, 2.276 (1) Å, is much longer than those found in $W_2(mhp)_4$ (mhp = the anion of 2-hydroxo-6-methylpyridine), 2.161 (1) Å, and closely related molecules,¹⁶ very similar to those typical of triply bonded $L_3W \equiv WL_3$ species,^{8b} 2.25-2.30 Å, and only slightly longer than those (~2.26 Å) in the $[W_2Me_8]^{4-}$ and $[W_2Me_{8-n}Cl_n]^{4-}$ ions.³

W2O3Cl5(CH3CO2)(PBu "3)3'solvate, 5, is the "uncharacterized W acetate" obtained by Sharp and Schrock⁷ upon treatment of $W_2Cl_4(PBu^n_3)_4$ with excess acetic acid in a glyme-type solvent at 160 °C. Its structure is shown in Figure 4. It is clearly a new example of the " M_3X_{13} " type of trinuclear cluster which has been observed in several variations when M = Mo^{17,18} but so far only known in the form of the $[W_3O_4F_9]^{5-}$ ion reported by Mattes¹⁹ for tungsten. As in other " M_3X_{13} " species a set of W-W single bonds between the W(1V) atoms can be postulated and the mean W-W distance, 2.609 Å, is consistent with this.²⁰ Each tungsten atom has the usual coordination geometry for the "M₃X₁₃" structure, although the ligands cause a somewhat unequal distribution of formal charge. Note that we have for the first time a μ_3 -Cl in a trinuclear Mo or W cluster; also, each PBuⁿ₃ ligand is trans to μ_3 -Cl.

Acknowledgment. We are grateful to the National Science Foundation for financial support. We thank Dr. M. W. Extine of the Molecular Structure Corporation for his participation in the solution and refinement of structure 1.

Figure 4. The W₃O₃Cl₅(CH₃CO₂)(PBuⁿ₃)₃ unit in compound 5, omitting the n-Bu groups. Ellipsoids are shown at the 50% probability level.

Supplementary Material Available: Tables (11-V1) of atomic positional parameters for compounds 1-5 (4 pages). Ordering information is given on any current masthead page.

References and Notes

- (1) Bino, A.; Cotton, F. A. Proceedings of the Third International Conference on the Chemistry and Uses of Molybdenum, Aug 1979, to be published in I. Less-Common Metals.
- J. Less-Common Metals. The first unambiguous example, the extremely unstable $[W_2Me_6]^{4-}$, was reported only in 1977.³ The first compounds that are stable in the atmo-(2)sphere at room temperature, W2(C8H8)34 and W2(2-oxo-6-methylpyridine)4, were also reported very recently. Since then a few others similar to the oxopyridine complex have been described.6
- (3) Cotton, F. A.; Koch, S.; Mertis, K.; Millar, M.; Wilkinson, G. J. Am. Chem. Soc. 1977, 99, 4989.
- Cotton, F. A.; Koch, S. A. J. Am. Chem. Soc. 1977, 99, 7371. Cotton, F. A., Koch, S. A.; Schultz, A. J.; Williams, J. M. Inorg. Chem. 1978, 17, 2093.
- Cotton, F. A.; Fanwick, P. E.; Niswander, R. H.; Sekutowski, J. C. J. Am. (5) Chem. Soc. 1978, 100, 4725.
- (6) Cotton, F. A.; Niswander, R. H.; Sekutowski, J. C. Inorg. Chem. 1978, 17, 3541. Cotton, F. A.; Niswander, R. H.; Sekutowski, J. C. Ibid. 1979, 18, 1152
- (7) Sharp, P. R.; Schrock, R. R. J. Am. Chem. Soc., preceding paper in this issue
- (8) (a) Cotton, F. A. Acc. Chem. Res. 1978, 11, 225. (b) Chisholm, M. H., Cotton, F. A. Ibid. 1978, 11, 356. (c) Templeton, J. L. Prog. Inorg. Chem. 1979, 26, 211.
- Cotton, F. A.; Felthouse, T. R.; Lay, D. G., unpublished work
- (10) Tables of atomic positional parameters are available as supplementary material. All structures are now refined to very low R values and the few additional modifications in the refinement procedures are not expected to affect any bond distances or angles significantly. Crystallographic data are as follows. 1: space group C2/c; a = 18.297 (3), b = 9.192 (2), c = 19.042 (2) Å; $\beta = 124.93$ (1)^o; Z = 4; $R_F = 0.031$, $R_{wF} = 0.045$ for 1741 reflections with $l > 3\sigma(l)$. 2: space group $P2_1/n$; a = 9.150 (2), b = 12.029 (1), c = 14.245 (2) Å; $\beta = 105.88$ (2)^o; Z = 2; $R_F = 0.033$, $R_{wF} = 0.047$ (1), c = 14.245 (2) A; $\beta = 105.88$ (2)°; Z = 2; $R_F = 0.033$, $R_{WF} = 0.047$ for 2082 reflections with $l > 3\sigma(l)$. 3: space group C2/c; a = 24.702 (5), b = 10.024 (1), c = 22.822 (4) Å; $\beta = 118.81$ (2)°; Z = 4; $R_F = 0.028$, $R_{WF} = 0.039$ for 3261 reflections with $l > 3\sigma(l)$. 4: space group $P2_1/n$; a = 23.103 (3), b = 13.254 (2), c = 16.781 (3) Å; $\beta = 107.53$ (1)°; Z = 4; $R_F = 0.054$, $R_{WF} = 0.061$ for 3517 reflections with $l > 3\sigma(l)$. 5: space group $P2_1/n$; a = 12.056 (3), b = 20.248 (4), c = 23.977 (7) Å; $\beta = 92.17$ (2)°; Z = 4; $R_F = 0.049$, $R_{WF} = 0.063$ for 5729 reflections with $l > 3\sigma(l)$. (11) Cotton, F. A.; Frenz, B. A.; Ebner, J. R.; Walton, R. A. Inorg. Chem. 1976, 153.
- 15. 1630
- (12) Abbott, E. H.; Bose, K. S.; Cotton, F. A.; Hall, W. T.; Sekutowski, J. C. Inorg.
- *Chem.* **1978**, 17, 3240.
 (13) Cotton, F. A.; Fanwick, P. E.; Fitch, J. W.; Glicksman, H. D.; Walton, R. A. *J. Am. Chem. Soc.* **1979**, *101*, 1752.
- Cotton, F. A.; Stanley, G. G.; Walton, R. A., Inorg. Chem. 1978, 17, (14)2099
- (15) The staggered configuration rules out the existence of a δ bond and the W-W distance in this case is ~0.038 Å longer than those in 1, 2, and 3. Whether 4 is paramagnetic with two unpaired electrons, as a simple analysis would suggest, remains to be determined. In any case, it appears

that 4 provides a clear example of the strength of the conformational preference of the fused six-membered rings, which met no resistance in Re₂Cl₄(dppe)₂ but here apparently overcomes the resistance offered by

- the tendency toward δ bonding. (16) In keeping with this, Sharp and Schrock⁷ found ν_{W-W} of 260 cm⁻¹ whereas, for W₂(mhp)₄·CH₂Cl₂, a ν_{W-W} of 295 cm⁻¹ was found.⁵ (17) Bino, A.; Cotton, F. A.; Dori, Z. *Inorg. Chim. Acta* **1979**, *33*, L133. (18) Bino, A.; Cotton, F. A.; Dori, Z. *J. Am. Chem. Soc.* **1979**, *101*, 3842.

- (19) Bino, A., Cotton, F. A., Duri, Z. J. Am. Chem. Soc. 1979, 101, 3842.
 (19) Mennemann, K.; Mattes, R. Angew. Chem. 1976, 88, 92.
 (20) See, for example, the W—W single bonds in W₃O₂-type clusters²¹ that have distances of ~2.75 Å, the W—W bond in [W₃O₄F₉]⁵⁻ (2.515 Å),¹⁹ and the W—W (2.791 Å) and W=W (2.530 Å) bonds in disulfur bridged species.²²
- (21) Bino, A.; Cotton, F. A.; Dori, Z.; Koch, S.; Küppers, H.; Millar, M.; Sekutowski, J. C. *Inorg. Chem.* 1978, *17*, 3245.
 (22) Bino, A.; Cotton, F. A.; Dori, Z.; Sekutowski, J. C. *Inorg. Chem.* 1978, *17*,
- 2946.

F. A. Cotton,* T. R. Felthouse, D. G. Lay

Department of Chemistry, Texas A&M University College Station, Texas 77843 Received October 26, 1979

Controlled Chemical Synthesis of the Enzymatically Produced Eicosanoids 11-, 12-, and 15-HETE from Arachidonic Acid and Conversion into the Corresponding Hydroperoxides (HPETE)

Sir:

Arachídonic acid (1) serves as the biological precursor of a growing family of physiologically active eicosanoids^{1,2} which includes not only the prostaglandins and their further transformation products (thromboxanes, prostacyclines, etc.) but also lipoxygenase-derived hydroperoxides and alcohols (HPETE's and HETE's, respectively).³⁻⁷ Although the lipoxygenase type of oxidation of cis, cis-1,4-dienes (Scheme I)

can in principle be effected by singlet oxygen ($^{1}\Delta g$ state), the reaction of this reagent with polyunsaturated acids is so nonselective (leading to mixtures of all of the expected "ene" oxidation products)⁸ as to be preparatively useless. In this communication we describe an approach to the synthesis of three biologically interesting HETE's by methods which are suitable for multigram laboratory preparation and which illustrate useful new synthetic methodology as well.

The one-step conversion of arachidonic acid into the 14,15-epoxide (2) in 98% yield by internal oxygen transfer has recently been described.9 Reaction of 2 with 5 equiv of the

reagent prepared from isopropylcyclohexylamine and methylmagnesium bromide (1:1) in tetrahydrofuran (THF) at 0 °C for 10 min and then 0-23 °C for 2 h and 23 °C for 3.5 h was very clean and afforded, after quenching with saturated aqueous sodium dihydrogen phosphate, extractive isolation with ether, concentration, and simple chromatographic sepa-

© 1980 American Chemical Society