gands and since it is slowly converted into $\mathbf{3 a}$ by PMe_{3}, we formulate it as $\mathrm{W}_{2} \mathrm{Cl}_{6}(\mathrm{THF})_{4}(\mathbf{3 c}) .{ }^{10}$ Further reduction of $\mathbf{3 c}$ in THF yields an intense blue solution which contains an as yet unidentified thermally unstable species.

From these data alone we are not able to choose between several possible pathways to $\mathbf{1}$. Both $\mathbf{3 a}$ and $\mathbf{3 c}$ are plausbile intermediates. At present we believe the intermediate would more likely be 3a since 3c (as noted above) does not appear to react rapidly enough with PMe_{3} to give 1.

If WCl_{4} is allowed to react with PMe_{3} to yield $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ before any sodium amalgam is added, then subsequent reduction yields only monomeric species. $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ is reduced first to orange, crystalline mer$\mathrm{WCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3}{ }^{11}$ and then to orange, crystalline trans$\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}{ }^{12}$ with 1 and 2 equiv of sodium amalgam (respectively) in THF at $25^{\circ} \mathrm{C}$ in the presence of 1 equiv of PMe_{3}. Interestingly, however, dimeric $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$ can be prepared from $\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}$ in 60% yield in refluxing dibutyl ether (eq 2); loss of volatile PMe_{3} must yield fragments such as $\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{3}$ which can then dimerize, ultimately to give $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$. Note that a similar attempt to make 3 a from $\mathrm{WCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3}$ gave a $2: 1$ mixture of $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}$ and $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$; presumably $\mathrm{WCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3}$ first disproportionates to $\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{x}$ and $\mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{y}$ (eq 3).

$$
\begin{gather*}
\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4} \underset{\mathrm{Bu}_{2} \mathrm{O}}{\text { refluxing }} 0.5 \mathrm{~W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}+2 \mathrm{PMe}_{3} \tag{2}\\
\mathrm{WCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3} \xrightarrow[\mathrm{Bu}_{2} \mathrm{O}]{\text { refluxing }} 0.25 \mathrm{~W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4} \\
 \tag{3}\\
+0.5 \mathrm{WCl}_{4}\left(\mathrm{PMe}_{3}\right)_{3}+0.5 \mathrm{PMe}_{3}
\end{gather*}
$$

It is quite likely that these $\mathrm{W}_{2} \mathrm{Cl}_{4} \mathrm{~L}_{4}$ compounds are isostructural with the analogous Mo species. This is largely true, although there still are some surprises, as shown by X-ray studies of several of these species. ${ }^{13}$

We had hoped that the $\mathrm{W}_{2} \mathrm{~L}_{4} \mathrm{Cl}_{4}$ species would provide a route to $\mathrm{W}_{2}(\mathrm{OAc})_{4}$ (a facile reaction when the metal is Mo^{14}). Unfortunately, it appears that the tungsten complexes are more resistant to simple reactions under mild conditions than the Mo species. For example, heating $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PBu}_{3}\right)_{4}$ with $4-9$ equiv of acetic acid in glyme at $160^{\circ} \mathrm{C}$ for 4 h gives a moderate yield of a soluble red complex which contains two types of uncoupled phosphorus nuclei ($2: 1$ by ${ }^{31} \mathrm{P}$ NMR), Cl , and what appears to be an acetate ligand by ${ }^{13} \mathrm{C}$ NMR. We are still attempting to characterize this " W acetate". 13

Acknowledgments. We thank the National Science Foundation for support (CHE79-05307) and the Dow Chemical Company for a fellowship to P.R.S. We also thank Mr. Luke Schoeniger of Professor E. Solomon's group for obtaining the Raman data.

References and Notes

(1) Cotton, F. A. Acc. Chem. Res. 1978, 11, 225-232.
(2) Bino, A.; Cotton, F. A.; Dori, Z.; Koch, S.; Kuppers, H.; Millar, M.; Sekutowski, J. C. Inorg. Chem. 1978, 17, 3245-3253.
(3) (a) Armstrong, J. E.; Edwards, D. A.; Maguire, J. J.; Walton, R. A. Inorg. Chem. 1979, 18, 1172-1174. (b) Chisholm, M. H.; Cotton, F. A.; Extine, M. W.; Millar, M.: Stults, B. R. Ibid. 1977, 16, 320-328.
(4) (a) San Filippo, J., Jr. Inorg. Chem. 1972, 11,3140 . (b) San Filippo, J., Jr.; Sniadock, H. J.; Grayson, R. L. Ibid. 1974, 13, 2121-2130. (c) Glickman, H. P.; Hamer, A. D.; Smith, T. J.; Walton, R. A. Hidi. 1976, 15, 22052209.
(5) Best, S. A.; Smith, T. J.; Walton, R. A. Inorg. Chem. 1978, 17, 99.
(6) Calcd for $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PM}_{3}\right)_{4}\left(\mathrm{~W}_{2} \mathrm{C}_{12} \mathrm{H}_{36} \mathrm{Cl}_{4} \mathrm{P}_{4}\right)$: $\mathrm{C}, 17.71 ; \mathrm{H}, 4.47$. Found: $\mathrm{C}, 17.82$; $\mathrm{H}, 4.52$. Calcd for $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMePh}_{2}\right)_{4}\left(\mathrm{~W}_{2} \mathrm{C}_{52} \mathrm{H}_{52} \mathrm{Cl}_{4} \mathrm{P}_{4}\right)$: C. $47.66 ; \mathrm{H}, 4.00$. Found: C, 47.44; $\mathrm{H}, 4.15$. Calcd for $\mathrm{W}_{2} \mathrm{Cl}_{4}(\text { diphos })_{2}\left(\mathrm{~W}_{2} \mathrm{C}_{52} \mathrm{H}_{48} \mathrm{Cl}_{4} \mathrm{P}_{4}\right)$: C , 47.81; $\mathrm{H}, 3.70$. Found: $\mathrm{C}, 48.25 ; \mathrm{H}, 4.01$. Calcd for $\mathrm{W}_{2} \mathrm{Cl}_{4}$ (dmpe) $)_{2}+$ oluene $\left(\mathrm{W}_{2} \mathrm{C}_{19} \mathrm{H}_{40} \mathrm{Cl}_{4} \mathrm{P}_{4}\right)$: $\mathrm{C} ; 25.30 ; \mathrm{H} ; 4.48$. Found: $\mathrm{C}, 25.28 ; \mathrm{H}, 4.68$.
(7) (a) Reasonable values for ${ }^{1} J_{\mathrm{pw}},{ }^{2} J_{\mathrm{pw}}$, and ${ }^{3} J_{\mathrm{pp}}(230,49$, and 27 Hz , respectively, for $\mathrm{L}=\mathrm{PBu}_{3}$) can be obtained by a procedure similar to that employed by Yoshida et al. ${ }^{7 b}$ However, in the present case, the spectra are not first order and computer fitting will be necessary for a proper analysis. (b) Yoshida, T.; Yamagata, T.; Tulip, T. H.; Ibers, J. A.; Otsuka, S.J.Am. Chem. Soc. 1978, 100, 2063-2073.
(8) Rotating KBr pellet with argon laser $5145-\mathrm{nm}$ light (scanning rate $0.5 \mathrm{~cm}^{-1}$ s^{-1}).
(9) Jackson, R. B.; Streib, W. E. Inorg. Chem. 1971, 10, 1760.
(10) Calcd for $\mathrm{W}_{2} \mathrm{Cl}_{8}(\mathrm{THF})_{4}\left(\mathrm{~W}_{2} \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{Cl}_{6} \mathrm{O}_{4}\right)$: $\mathrm{C}, 22.12 ; \mathrm{H}, 3.71$. Found: $\mathrm{C}, 22.30$; H, 3.83.
(11) (a) Calcd for $\mathrm{WCl}_{3}\left(\mathrm{PMe}_{3}\right)_{3}\left(\mathrm{WC}_{9} \mathrm{H}_{27} \mathrm{Cl}_{3} \mathrm{P}_{3}\right): \mathrm{C}, 20.85 ; \mathrm{H}, 5.25$. Found: $\mathrm{C}, 20.51$; $\mathrm{H}, 5.19$. The compound shows two very broad peaks for the PM_{3} protons in the ${ }^{1} \mathrm{H}$ NMR spectrum at $\delta-11$ and -15 in a $1: 2$ ratio. We therefore assign the mer geometry to it. An analogous mer-MoCl ${ }_{3} \mathrm{py}_{3}$ complex is known. ${ }^{11 \mathrm{~b}}$ (b) Brencic, J. V. Z. Anorg. Allgem. Chem. 1974, 403, 218224.
(12) Calcd for $\mathrm{WCl}_{2}\left(\mathrm{PMe}_{3}\right)_{4}\left(\mathrm{WC}_{12} \mathrm{H}_{36} \mathrm{Cl}_{2} \mathrm{P}_{4}\right)$: $\mathrm{C}, 25.78 ; \mathrm{H}, 6.49$. Found: $\mathrm{C}, 26.20 ;$ $\mathrm{H}, 6.48$. A trans geometry was tentatively assigned based on a single broad peak observed for the PMe_{3} protons at $\delta 3.8$ in the ${ }^{1} \mathrm{H}$ NMR spectrum.
(13) See Cotton, F. A.; Felthouse, T. R.; Lay, D. G. J. Am. Chem. Soc., following paper in this issue.
(14) San Filippo, J., Jr.; Sniadock, H. J. Inorg. Chem. 1976, 15, 2209-2215.

Paul R. Sharp, Richard R. Schrock*
Department of Chemistry Massachusetts Institute of Technology
Cambridge, Massachusetts 02139
Received October 15, 1979

Structural Characterization of

Four Quadruply Bonded Ditungsten Compounds and a New Trinuclear Tungsten Cluster

Sir:
In contrast to the ease with which quadruply bonded dimolybdenum compounds may be obtained in enormous numbers and variety, ${ }^{1}$ the attempted preparation of similar tungsten compounds has been a relatively unproductive exercise. ${ }^{2-6}$ Thus, the recent success of Sharp and Schrock ${ }^{7}$ in preparing a whole class of mixed halogeno-phosphine complexes of the general type $\mathrm{W}_{2} \mathrm{X}_{4}\left(\mathrm{PR}_{3}\right)_{4}$, which are stable in air at room temperature, constitutes a very significant contribution to the field of metal-metal multiple bonds. ${ }^{8}$

Structural characterization of representative members of this new group of compounds has been carried out and the results present an interesting mixture of the expected and the unexpected. We report here the structures of five compounds, all supplied to us in crystalline form by Sharp and Schrock: 1, $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4} ; \quad \mathbf{2}, \quad \mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dmpe})_{2} \cdot \mathrm{C}_{7} \mathrm{H}_{8} ; \mathbf{3}$, green $\mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2} \cdot 0.5 \mathrm{H}_{2} \mathrm{O} ; 4$, brown $\mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2} ; 5, \mathrm{~W}_{3}-$ $\mathrm{O}_{3} \mathrm{Cl}_{5}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{PBu}_{3}\right)_{3}$. solvate. In these formulas dmpe $=\mathrm{Me}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PMe}_{2}$ and dppe $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$. Full descriptions of all these structures will be published elsewhere. ${ }^{9,10}$
$\mathbf{W}_{\mathbf{2}} \mathrm{Cl}_{\mathbf{4}}\left(\mathrm{PMe}_{3}\right)_{\mathbf{4}}, \mathbf{1}$, has the structure shown in Figure 1. Unlike the stoichiometrically and conformationally similar $\mathrm{Re}_{2} \mathrm{Cl}_{4}\left(\mathrm{PEt}_{3}\right)_{4}{ }^{11}$ this compound does not pack in a disordered manner and the structure was solved simply and straightforwardly. The structure is that anticipated from our knowledge of dimolybdenum and dirhenium compounds. There should be a $\mathrm{W}-\mathrm{W}$ quadruple bond and the overall eclipsed conformation is consistent with this; the PMe_{3} groups are staggered among themselves. A few important bond distances and angles, for this and for compounds 2-4, are given in Table I.

Table I. Some Key Bond Distances and Angles in 1-4 ${ }^{\text {a,b }}$

compd	distances, \AA			angles, deg	
	W-W	$\bar{W}-\mathrm{Cl}$	W-P	W-W-Cl	W-W-P
1	2.262 (1)	2.393 (2)	2.506 (2)	111.73 (6)	101.13 (6)
2	2.287 (1)	2.426 (2)	2.451 (2)	116.1 (1)	96.2 (1)
3	2.280 (1)	2.409 (1)	2.502 (1)	111.0 (1)	98.1 (1)
4	2.314 (1)	2.371 (4)	2.530 (4)	112.3 (1)	97.0 (1)

${ }^{a}$ Figures in parentheses are esd's occurring in the least significant digit. ${ }^{b}$ Values given reflect averages of chemically equivalent distances and angles.

Figure 1. The structure of $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PMe}_{3}\right)_{4}$, $\mathbf{1}$, with thermal ellipsoids at the 50% probability level. A twofold rotation axis passes through the $\mathrm{W}-\mathrm{W}$ bond.

Figure 2. The structure of the $\mathrm{W}_{2} \mathrm{Cl}_{4}$ (dmpe) $)_{2}$ unit in $\mathrm{W}_{2} \mathrm{Cl}_{4}$ (dmpe) $)_{2} \mathrm{C}_{7} \mathrm{H}_{8}$, 2. Vibrational ellipsoids are scaled so as to enclose 50% of their electron density. A crystallographic center of inversion is located at the midpoint of the W-W bond.
$\mathbf{W}_{2} \mathrm{Cl}_{4}$ (dmpe $)_{2} \mathbf{C}_{7} \mathrm{H}_{8}, 2$, has a structure which is fundamentally unsurprising but in detail highly novel; it is shown in Figure 2. The remarkable feature, of course, is the presence of the dmpe ligands as chelating rather than bridging groups; the chelate ring has a chair conformation. The molecule resides on a crystallographic center of symmetry which ensures an eclipsed arrangement of the eight ligand atoms with overall ('2h symmetry.

Green $\mathbf{W}_{2} \mathrm{Cl}_{\mathbf{4}}(\mathrm{dppe})_{2} \cdot \mathbf{0 . 5 H}_{2} \mathbf{O}, \mathbf{3}$, is found as an "impurity" (about $\mathrm{mol} 10 \%$) in the reported ${ }^{7}$ brown compound 4. It has a structure analogous to that of $\mathbf{2}$ and its bond distances and angles (Table I) are very similar.

In brown $\mathbf{W}_{2} \mathrm{Cl}_{4}$ (dppe) $)_{2}$, $\mathbf{4}$, we find the dppe ligands in the bridging posture already familiar from $\mathrm{Mo}_{2} \mathrm{X}_{4}(\mathrm{dppm})_{2}$ with $\mathrm{dppm}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPh}_{2}$ and $\mathrm{X}=\mathrm{Cl}$ and $-\mathrm{NCS},{ }^{12} \mathrm{Mo}_{2}-$ Br_{4} (arphos) $)_{2}$ with arphos $=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{CH}_{2} \mathrm{AsPh}_{2},{ }^{13}$ and $\mathrm{Re}_{2} \mathrm{Cl}_{4}$ (dppe) $)_{2},{ }^{14}$ as shown in Figure 3. The Mo_{2} species just mentioned are expected to have quadruple bonds and hence

Figure 3. An ORTEP drawing of brown $\mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2}, 4$, showing only the α-carbon atoms of the phenyl rings in the dppe ligands. Thermal ellipsoids are drawn at the 50% probability level.
small internal torsion angles. The first two have angles of 0° and 13.3° while the arphos compound has a mean angle of 30°; this last angle is not, however, incompatible with the retention of considerable δ bonding. ${ }^{13}$ The rhenium compound, in which only a triple bond is expected, has a mean torsion angle of 45°, i.e., the conformation is staggered. It is to be noted that $\mathrm{Mo}_{2^{-}}$ Br_{4} (arphos) $)_{2}$ and $\mathrm{Re}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2}$ are "isomorphous" in the usual loose usage of that term; brown $\mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2}$ is similarly "isomorphous" with both of them. Since $\mathrm{W}_{2} \mathrm{Cl}_{4}(\mathrm{dppe})_{2}$ has the proper number of electrons to contain a $\sigma^{2} \pi^{4} \delta^{2}$ quadruple bond, a torsion angle comparable with that in $\mathrm{Mo}_{2}-$ Br_{4} (arphos) $)_{2}$ might have been anticipated, but, in fact, $\mathbf{4}$ has an essentially staggered conformation like that of $\mathrm{Re}_{2} \mathrm{Cl}_{4}$ (dppe) $)_{2}{ }^{15}$

In compounds $\mathbf{1 , 2}$, and $\mathbf{3}$ the mean $\mathrm{W}-\mathrm{W}$ distance, 2.276 (1) \AA, is much longer than those found in $W_{2}(\mathrm{mhp})_{4}(\mathrm{mhp}=$ the anion of 2 -hydroxo- 6 -methylpyridine), 2.161 (1) \AA, and closely related molecules, ${ }^{16}$ very similar to those typical of triply bonded $\mathrm{L}_{3} \mathrm{~W} \equiv \mathrm{WL}_{3}$ species, ${ }^{8 \mathrm{~b}} 2.25-2.30 \AA$, and only slightly longer than those $(\sim 2.26 \AA)$ in the $\left[\mathrm{W}_{2} \mathrm{Me}_{8}\right]^{4-}$ and $\left[\mathrm{W}_{2} \mathrm{Me}_{8-n} \mathrm{Cl}_{n}\right]^{4-}$ ions. ${ }^{3}$
$\mathbf{W}_{2} \mathrm{O}_{3} \mathrm{Cl}_{5}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{PBu}^{\boldsymbol{n}}\right)_{3}$ •solvate, $\mathbf{5}$, is the "uncharacterized W acetate" obtained by Sharp and Schrock ${ }^{7}$ upon treatment of $\mathrm{W}_{2} \mathrm{Cl}_{4}\left(\mathrm{PBu}^{n}\right)_{4}$ with excess acetic acid in a glyme-type solvent at $160^{\circ} \mathrm{C}$. Its structure is shown in Figure 4. It is clearly a new example of the " $\mathrm{M}_{3} \mathrm{X}_{13}$ " type of trinuclear cluster which has been observed in several variations when M $=\mathrm{Mo}^{17,18}$ but so far only known in the form of the $\left[\mathrm{W}_{3} \mathrm{O}_{4} \mathrm{~F}_{9}\right]^{5-}$ ion reported by Mattes ${ }^{19}$ for tungsten. As in other " $\mathrm{M}_{3} \mathrm{X}_{13}$ " species a set of $\mathrm{W}-\mathrm{W}$ single bonds between the W(IV) atoms can be postulated and the mean W-W distance, $2.609 \AA$, is consistent with this. ${ }^{20}$ Each tungsten atom has the usual coordination geometry for the " $\mathrm{M}_{3} \mathrm{X}_{13}$ " structure, although the ligands cause a somewhat unequal distribution of formal charge. Note that we have for the first time a $\mu_{3}-\mathrm{Cl}$ in a trinuclear Mo or W cluster; also, each $\mathrm{PBu}^{n}{ }_{3}$ ligand is trans to $\mu_{3}-\mathrm{Cl}$.

Acknowledgment. We are grateful to the National Science Foundation for financial support. We thank Dr. M. W. Extine of the Molecular Structure Corporation for his participation in the solution and refinement of structure 1.

Figure 4. The $\mathrm{W}_{3} \mathrm{O}_{3} \mathrm{Cl}_{5}\left(\mathrm{CH}_{3} \mathrm{CO}_{2}\right)\left(\mathrm{PBu}_{3}\right)_{3}$ unit in compound 5 , omitting the n-Bu groups. Ellipsoids are shown at the 50% probability level.

Supplementary Material Available: Tables ($\mathrm{II}-\mathrm{VI}$) of atomic positional parameters for compounds 1-5 (4 pages). Ordering information is given on any current masthead page.

References and Notes

(1) Bino, A.; Cotton, F. A. Proceedings of the Third International Conference on the Chemistry and Uses of Molybdenum, Aug 1979, to be published in J. Less-Common Metals.
(2) The first unambiguous exampie, the extremely unstable $\left[\mathrm{W}_{2} \mathrm{Me}_{8}\right]^{4-}$, was reported only in 1977. ${ }^{3}$ The first compounds that are stable in the atmosphere at room temperature, $\mathrm{W}_{2}\left(\mathrm{C}_{8} \mathrm{H}_{8}\right)_{3}{ }^{4}$ and $\mathrm{W}_{2}(2-0 \times 0-6 \text {-methylpyridine })_{4}{ }^{5}$ were also reported very recently. Since then a few others similar to the oxopyridine complex have been described. ${ }^{6}$
(3) Cotton, F. A.; Koch, S.; Mertis, K.; Millar, M.; Wilkinson, G. J. Am. Chem. Soc. 1977, 99, 4989.
(4) Cotton, F. A.; Koch, S. A. J. Am. Chem. Soc. 1977, 99, 7371. Cotton, F. A., Koch, S. A.; Schultz, A. J.; Williams, J. M. Inorg. Chem. 1978, 17, 2093.
(5) Cotton, F. A.; Fanwick, P. E.; Niswander, R. H.; Sekutowski, J. C. J. Am. Chem. Soc. 1978, 100, 4725.
(6) Cotton, F. A.; Niswander, R. H,; Sekutowski, J. C. Inorg. Chem. 1978, 17, 3541. Cotton, F. A.; Niswander, R. H.; Sekutowski, J. C. Ibid. 1979, 18, 1152.
(7) Sharp, P. R.; Schrock, R. R. J. Am. Chem. Soc., preceding paper in this issue.
(8) (a) Cotton, F. A. Acc. Chem. Res. 1978, 11, 225. (b) Chisholm, M. H., Cotton, F. A. Ibid. 1978, 11, 356. (c) Templeton, J. L. Prog. Inorg. Chem. 1979, 26, 211.
(9) Cotton, F. A.; Felthouse, T. R.; Lay, D. G., unpublished work.
(10) Tables of atomic positional parameters are available as supplementary material. All structures are now refined to very low R values and the few additional modifications in the refinement procedures are not expected to affect any bond distances or angles significantly. Crystallographic data are as follows. 1: space group $C 2 / c ; a=18.297$ (3), $b=9.192(2), c=$ 19.042 (2) $\AA ; \beta=124.93(1)^{\circ} ; Z=4 ; R_{F}=0.031, R_{w F}=0.045$ for 1741 reflections with $1>3 \sigma(1)$. 2: space group $P 2_{1} / n ; a=9.150(2), b=12.029$ (1), $c=14.245$ (2) $A ; \beta=105.88(2)^{\circ} ; Z=2 ; R_{F}=0.033, R_{w F}=0.047$ for 2082 reflections with $1>3 \sigma(1)$. 3: space group $C 2 / \mathrm{c} ; a=24.702$ (5), $b=10.024(1), c=22.822(4) A ; \beta=118.81(2)^{\circ} ; Z=4 ; R_{F}=0.028, R_{w F}$ $=0.039$ for 3261 reflections with $1>3 \sigma(1)$. 4: space group $P 2_{1} / n ; a=$ 23.103 (3), $b=13.254$ (2), $c=16.781$ (3) $A ; \beta=107.53(1)^{\circ} ; Z=4 ; R_{F}$ $=0.054, R_{w f}=0.061$ for 3517 reflections with $1>3 \sigma(1)$. 5: space group $P 2_{1} / \mathrm{n} ; \mathrm{a}=12.056$ (3), $b=20.248$ (4), $c=23.977$ (7) $A ; \beta=92.17$ (2) ${ }^{\circ}$; $Z=4 ; R_{F}=0.049, R_{w F}=0.063$ for 5729 reflections with $1>3 \sigma(1)$.
(11) Cotton, F. A.; Frenz, B. A.; Ebner, J. R.; Walton, R. A. Inorg. Chem. 1976, 15, 1630.
(12) Abbott, E. H.; Bose, K. S.; Cotton, F. A.; Hall, W. T.; Sekutowski, J. C. Inorg. Chem. 1978, 17, 3240
(13) Cotton, F. A.; Fanwick, P. E.; Fitch, J. W.; Glicksman, H. D.; Walton, R. A. J. Am. Chem. Soc. 1979, 101, 1752.
(14) Cotton, F. A.; Stanley, G. G.; Walton, R. A., Inorg. Chem. 1978, 17, 2099.
(15) The staggered configuration rules out the existence of a δ bond and the W-W distance in this case is ~ 0.038 A longer than those in 1, 2, and 3. Whether $\mathbf{4}$ is paramagnetic with two unpaired electrons, as a simple analysis would suggest, remains to be determined. In any case, it appears
that 4 provides a clear example of the strength of the conformational preference of the fused six-membered rings, which met no resistance in $\mathrm{Re}_{2} \mathrm{Cl}_{4}$ (dppe) $)_{2}$ but here apparently overcomes the resistance offered by the tendency toward δ bonding.
(16) In keeping with this, Sharp and Schrock ${ }^{7}$ found $\nu_{\text {w-w }}$ of $260 \mathrm{~cm}^{-1}$ whereas, for $\mathrm{W}_{2}(\mathrm{mhp})_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, a $\nu_{\mathrm{W}-\mathrm{W}}$ of $295 \mathrm{~cm}^{-1}$ was found. ${ }^{5}$
(17) Bino, A.; Cotton, F. A.; Dori, Z. Inorg. Chim. Acta 1979, 33, L133.
(18) Bino, A.; Cotton, F. A.; Dori, Z. J. Am. Chem. Soc. 1979, 101, 3842.
(19) Mennemann, K.; Mattes, R. Angew. Chem. 1976, 88, 92.
(20) See, for example, the $W-W$ single bonds in $W_{3} O_{2}$-type clusters ${ }^{21}$ that have distances of $\sim 2.75 \AA$, the $W-W$ bond in $\left[\mathrm{W}_{3} \mathrm{O}_{3} \mathrm{~F}_{9}\right]^{5-}(2.515 \AA),{ }^{19}$ and the $W-W(2.791 A)$ and $W=W(2.530 A)$ bonds in disulfur bridged species. ${ }^{22}$
(21) Bino, A.; Cotton, F. A.; Dori. Z.; Koch, S.; Küppers, H.; Millar, M.; Sekutowski, J. C. Inorg. Chem. 1978, 17, 3245.
(22) Bino, A.; Cotton, F. A.; Dori, Z.; Sekutowski, J. C. Inorg. Chem. 1978, 17, 2946.

F. A. Cotton,* T. R. Felthouse, D. G. Lay
Department of Chemistry, Texas A\&M University College Station, Texas 77843
Received October 26, 1979

Controlled Chemical Synthesis of the Enzymatically Produced Eicosanoids 11-, 12-, and 15-HETE from Arachidonic Acid and Conversion into the Corresponding Hydroperoxides (HPETE)

Sir:
Arachidonic acid (1) serves as the biological precursor of a growing family of physiologically active eicosanoids ${ }^{1,2}$ which includes not only the prostaglandins and their further transformation products (thromboxanes, prostacyclines, etc.) but also lipoxygenase-derived hydroperoxides and alcohols (HPETE's and HETE's, respectively). ${ }^{3-7}$ Although the lipoxygenase type of oxidation of $c i s, c i s$-1,4-dienes (Scheme I)

Scheme I

can in principle be effected by singlet oxygen (${ }^{1} \Delta \mathrm{~g}$ state), the reaction of this reagent with polyunsaturated acids is so nonselective (leading to mixtures of all of the expected "ene" oxidation products $)^{8}$ as to be preparatively useless. In this communication we describe an approach to the synthesis of three biologically interesting HETE's by methods which are suitable for multigram laboratory preparation and which illustrate useful new synthetic methodology as well.

The one-step conversion of arachidonic acid into the 14,15-epoxide (2) in 98% yield by internal oxygen transfer has recently been described. ${ }^{9}$ Reaction of 2 with 5 equiv of the

reagent prepared from isopropylcyclohexylamine and methylmagnesium bromide ($1: 1$) in tetrahydrofuran (THF) at 0 ${ }^{\circ} \mathrm{C}$ for 10 min and then $0-23^{\circ} \mathrm{C}$ for 2 h and $23^{\circ} \mathrm{C}$ for 3.5 h was very clean and afforded, after quenching with saturated aqueous sodium dihydrogen phosphate, extractive isolation with ether, concentration, and simple chromatographic sepa-

